

Efficient and Secure Coordination Channels in the Access Grid

Deb Agarwal (<u>DAAgarwal@lbl.gov</u>)
Ernest Orlando Lawrence Berkeley National Laboratory
http://www-itg.lbl.gov/CIF/GroupComm/

Group Communication

Secure and reliable multicast

- Provide efficient and reliable communication between participating sites
- Communication channel directly connecting the participants (no intermediary server)
- Support participants spread across the Internet
- Remove dependence on servers (support ad hoc formation of groups)
- Provide a secure group communication channel
 - Authenticated members
 - Authorization of members
 - Data confidentiality
 - Data integrity

Group Communication

Architecture

InterGroup Protocol

- All members of the group can send messages to the group
- All processes in the group receive the messages sent within the group
- Membership tracking with notification of membership changes
- Messages delivered at each member of the group in a consistent order
 - Timestamp order
 - Preserve causality
 - Membership changes delivered in order

InterGroup Protocol Scaling

- Split group into a sender and receiver group
 - Sender group membership
 - processes are in the sender group only while transmitting messages
 - strictly maintained
 - very dynamic (small and fast)
 - Receiver group membership
 - Hierarchical structure
 - not strictly maintained
 - used for retransmissions and garbage collection
 - proxy send for low frequency senders
- Flexible delivery options

InterGroup Schematic

InterGroup Design

- Automatically handles membership, message ordering and retransmission of missed messages
- Uses IP Multicast to transmit messages
- Core protocol implemented in Java (requires jdk v1.3 or higher)
- User interface
 - Available in Java and soon in C++
 - Usable as a library that connects via TCP to the InterGroup protocol on another machine (coming soon)
- Datagram type service (not streaming)

InterGroup Application Interface

- User interface connection to InterGroup (Connection class)
 - SetName("Deb Agarwal")
 - Connect
 - Disconnect
- Group membership
 - SetName(<multicast address>, <port>)
 - Join
 - Leave
- Messages
 - Send(message)
 - OnData(group, sender, message)
 - OnMemb(group, membership)

Secure Group Layer

- Provides a secure channel for the group with properties similar to Secure Socket Layer (SSL)
- Authorization of group members using PKI (individually enforced)
- Key exchange
 - Group Diffie-Hellman algorithms
 - Based on provably secure crypto algorithms

Model for Proof of Security

Adversary capabilities modelled via queries

send: send messages to instances

reveal: obtain an instance's session key

corrupt: obtain a player's long-lived key

Security Goals

- Authenticated Key Exchange (AKE)
 - Implicit Authentication:
 - Only the intended partners can compute the session key
 - Semantic security:
 - A fresh session key is indistinguishable from a random string
- Mutual Authentication (MA)
 - Each player is convinced of the identity of his partners

Building a Shared Key

- A set of n players which have many instances
- Each player holds a long-lived key

Key Exchange

Secure Group Design

- Group Diffie-Hellman used for the sender group
- Designing key distribution mechanisms for receivers
- Shared password-based key agreement also being designed
- Uses InterGroup for sending messages and notification of membership changes
 - Verifies message ordering
 - Determines membership
- Authorization interfaced to Akenti

Implementation

- Next alpha release of the InterGroup implementation expected in April 2002
 - Written in Java (clients available in Java and C++)
 - All processes in the sender group
 - Flow/congestion control very crude
- Secure Group Layer
 - Implementation underway
 - Completed proofs of security of distributed key agreement algorithms
 - Release not yet scheduled

Thoughts on Use of Group Communication in the Access Grid

- Coordination channel for venue control
- Window arrangement channel
- Securing the venue
 - Generate session keys for use by the other AG tools
 - Virtual venues
- Distributed PowerPoint coordination
- Distributed chat/Moo tool
- Voyager recording/playback
- Etc. . . .

URL: http://www-itg.lbl.gov/CIF/GroupComm/